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ABSTRACT 

hr this paper, H'e describe an interface agellt, nvo different route planning agents and a pilot study lVI!ich 
examined whether these agents could support a team planning task. The MokSAF interface ageut li11ks 
an Artificial brtel/igeuce (AI) route-planning agent to a Geographic Information S."stem (G/Si. The user 
.spec{fies a start and an end poim and the route-plwmillg agent finds a minimum cost patllbern·een rhe 
points. The user is allowed to define additional "intangible" constraints (nm due to lerraiii 
characteristics) corresponding to geoxraphic regions, u-·hich can be used to steer the agem '.1· helun·ior in 
a de.~ired direction. A second agent (the nai've route planning agent, or :l\aive RPA) has access ro the 
same knowledge (~f the terrain and cost jlmctions available to the Auronomous RPA, but uses this 
knowledge to critique paths specified b.v the user. lVe h.vpothesiz.e that as the complexit,Y {~f' illfmrgihle 
aspects ~fa planning problem incre£He, the Naive RPA will improve in relative perfonnm;n'. ihe 
reported stud.vfound advantages across the board for the Autonomous RPA in a team-plmmillf< Ias!.:. 



INTRODUCTION 

As the task environment becomes more complex and uncertain and the time frame for making decisions 
is shortened, reliance on computer-assisted decision-making by both individuals and teams has increased 
dramatically. The current trend is towards software that not only retrieves information upon request hut 
also intelligently anticipates, adapts and actively seeks ways to support users [1]. These software agents 
can reduce the amount of interaction betv.•een humans and the computer system and allov.: the humans to 
concentrate on other activities such as assessing the situation, making decisions, or reacting to changes in 
the system 121. 

These gains, hm.vever, come. at the cost of increasing complexity and/or confusion in our rclaLion \Vith 
software. The management skills of decomposing and delegating tasks and monitoring performance once 
re.served for human suhordinate:s. may become necessary for interacting with sophisticated agents. 
Conversely, those agents which shield us from complex interactions hy quietly looking over our 
shoulders to anticipate our actions may actually decrease our situational awareness leaving us uncertain 
as to what is being done on our behalf [3]_ These difficulties can he compounded where multiple agents 
and humans are required to work as a team. Under these conditions. cascading delegation among 
softv-.•are agents and unknown silent assistance complicates the already challenging task of cooperating. 
communicating. and monitoring the task and other team members. 

Our research focuses on active (agent critiquing) and passive (agent performance} techniques. which 
enable us to communicate with software agents. While much of the early focus on decision <Jids has be-en 
on supporting the individual [4], we examine the middle ground of individually controlled software 
agents used in team tasks. 

Although it is desirable to organize individuals into groups and provide support via software agents, this 
is not necessarily an easy task. Multiple software agents, \\'orking in teams, cun autonomously sort 
through and evaluate the enormous quantities of information available to a team and thus, free it for 
other crucial tasks. Incorporating software agents into human teams presents many challenges. What 
roles should agents play in the overall team context? Can these roles be adapted during tusk 
performance'! \Vhat are effective ways for softv..'are agent.:; to interact with the human team memh;;:rs and 
with each other so as to increase team effectiveness? \\'hat are the appropriate mc::.1surcs of agent 
effectiveness within a team context and of team effectiveness? 

TEAMS AND TEAMWORK 

Characteristics of successful teams include self-awareness, within-team interdependence, feedback, 
performance monitoring, dear communication of intentions, and assisting other team members \vhen 
necessary. A team can be defined as 19]: 

"... a distinguishable set of two or more people who interact dynamically, 
interdependently, and adaptively towards a common and valued goal/objective/ 
mission, who each have been assigned specific roles or functions to peti'orm, and 
who have a limited life-span of membership." 

Team members must have a shared understanding of the capabilities, goals and intentions of other 
members in order to function effectively [10]. This shared understanding helps teammates to predict 
each other's performance under normal and specific circumstances. Typically. they gain this 
understanding through experience and training with the system [ 11]. 

To contribute to team success, software agents must support these forms of group intemction as \Vell as 
more task-oriented functions. The potential impact of successful development and deployment of agent 
technologies to mission critical teams includes: 



1) Reducing the time to make a decision; 

2) Allo\Ying teams to consider a broader range of alternatives; 

J) Allow-ing teams to manage contingencies flexibly by rapidly re-planning: 

4) Reducing the time required for a team to form a shared mental model of the situation; 

5) Reducing both individual and team errors; 

6) Increasing the cohesion among team memhers; 

7) increasing overall team performance. 

To be successful, team members must understand how to interact and control the computer technologies. 
They must know how to gather, summarize and interpret the information necessary to perform the 
task(s). In addition, team members must understand their role in the task and what information is 
required by their teammates. Finally, they should be aware of and act in accordance with the strengths 
and "veaknesses of their teammates [5]. \Ve believe that properly designed soft\vare agents can alleviate 
some of the burden from the human members of the team_ 

USJ:'>G THE li'iFOSPHERE TO MAKE PLANS 

Human decision-makers, particularly military commanders, typically face time pressures and an 
environment where changes may occur in the task, division of labor, and allocation of resources. 
Information such as terrain characteristics, location and capabilities of enemy forces, direct objectives 
and doctrinal constraints are part of the commander's infosphere. Information within the infosphcrc has 
the opportunity for data fusion. situation visualization, and "what-if' simulations. Softv.·i1Te agents have 
access to all information in the infosphere and can plan, criticize. and predict the consequences of 
actions using the infosphere information at a greater accuracy and finer granularity than the human 
commanders can. Multiple agents can be designed to use information cooperatively in the infosphcre to 
satisfy specified goals. 

Hov .. ·ever, these agents cannot consider information outside the infosphere unless it is captured in 
physical terms. This extra-infosphere data consists of intangible or multiple objectives involving morale, 
the political impact of actions (or inaction), intangible constraints, and the symbolic importance of 
different actions or objectives. Military conunanders, like other decision-makers, have vttst experiential 
information that is not easily quantifiable. Commanders must deal with idiosyncratic and situation
specific factors such as non-quantified information, complex or vaguely specified mission objectives t~nd 
dynamically changing situations (e.g., incomplete/changing/new information, obstacles, and enemy 
actions). \Vhen participating in a planning task, commanders must translate these intangible constrain Is 

into physic ttl ones to interact with planning agents. 

The issue then becomes how software agents should interact \Vith their human team memhers to 
incorporate these intangible constraints into the physical environment effecti vcly. 

TEn! APPROACHES 

As the role of teams becomes rnore important in organizations, developing and maintaining high 
performance teams has heen the goal of several researchers [12,13]. One major question is how to turn a 
team of experts into an expert team. There are several strategies emerging, including task~related cross 
training 1131 and integrating software agents into human-agent teams. \vhich is the focus of this research. 
\Ve have developed a framework for examining the different \Vays that software agents can be deployed 
in support of team performance: 

• Support the individual team members in completion of their own tasks; 
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• Allncalc: an agent its ov-.'n subtask as if V./e were introducing another member into the tearn: 

• Support the team as a whole. 

The first option focuses on the specific tasks that an individual must accomplish as part of the team. f'or 
a se(.;ond option, all the issues associated \Vith communication and (.;Oon.fination among team melllber.s 
become relevant [4.6,7]. The third option involves facilitating communication, allocating tasks, 
coordinating the human agents. and focusing attention. Specifically the focus is on ho\v soft\o\'arc agents 
can be used to support and promote teamwork. There have been several team models developed by 
researchers: the one selected for this research is best described by Cannon-Bowers and Salas [5] and 
Smith-Jcntsch, Johnston and Payne [7]. 

This teamwork model consists of four dimensions that build and maintain situational mvarenes.s within 
the team and hence support effective performance: 

• Information exchange - exploit all available information sources: disseminate information; 
provide situation updates; 

• Supporting behavior - prompt correction of team errors; provide and request backup when 
necessary; 

• Communication- proper terminology; complete internal and external reports; brevity and darily; 

• Team initiative/leadership - provide feedback to team members; state clear and appropriate 
priorities. 

This model focuses on observable, measurable behavior that can be evaluated and used to train teams to 
be more effective. A basic tenet of this model is that teamwork skills are different from task-b"scd 
competencies. The performance of teams, especially in tightly coupled tasks. is believed to be highly 
dependent on these interpersonal skills. 

In previous studies, we used a low fidelity radar simulation environment called Tandem [8] to examine 
\Vhether agents should support an individual's performance or the team's performance in a target 
identification task. Three-person teams were provided with one of three different aiding conditions. The 
first agent. the lndividuai Agent, aided the individual task and assisted communication among team 
memhers by aggregating values. This agent showed a11 data items available to an individual team 
member and filled in the values for the data items as the participants selected them from a menu_ The 
second agent, the Team Clipboard Agent, aggregated values from all members and automatically passed 
values as they were selected from the menu to the appropriate team member. The third agent. Tew11 
Checklist. aided team coordination by displaying who had access to what data. Teams were asked to 
identify a series of targets on the radar screen. These targets varied in how difficult they were to identify. 
That is, easy targets had no ambiguity on five pieces of identification data; medium targets had 
ambiguity on one or two data items out of five possible data items; and hard targets were ambiguous on 
two out of five items. We found that aiding teams helped more than aiding individuals when the team 
was faced with hard targets. 

THE PLA:\NING ENVIRONMENT: MOKSAF 

A computer-based simulation called MokSAF has been developed to evaluate hov.' humans can interact 
and obtain assistance from agents within a team environment. lvtokSAF is a simplified version of a 
virtual battlefield simulation called ModSAF (Modular Semi-Automated Forces). MokSAF allows two or 
more commanders to interact \Vith one another to plan routes in a particular terrain_ Each comm:.mdcr is 
tasked with planning a route from a start point to a shared rendezvous point by a certain time_ The 
individual commanders must then evaluate their plans from a team perspective and iteratively modify 
these plans until an acceptable team solution is developed. 



The interface agent that is used \Vithin the AfokSAF Environment is illustrated in Figure l. This <.Jgc-nt 
presents a terrain map. a tool bar, and details of the team plan. The terrains displayed on the map include 
soil (plain areas), roads (solid lines), freeways (thicker lines), buildings (black dots). rivers and forests. 
The rendezvous point is represented as a red circle and the start point as a yellow circle on the terrain 
map. As participants create routes with the help of a route-planning agent (see below). the routes arc 
shown in bright green. The second route shown is from another AfokSAF commander v • .:ho has agree-d to 
share a route. The partially transparent rectangles represent intangible constraints that the user has drJ\VIl 
on the terrain map. These indicate which areas should be avoided \Vhen determining a route. 

Terrain: 

Soil 

Forest 

Road 

Buildings 

Routes: 

Intangible (dynamic) 
constraint 

Start Point IC<)mmander 1) 

Start Point 
(Commander 2) 

Se$sioro Deta~s 
Map lje .'Jc:IJol,oba'\ne 

G1o~piD 

Ses[io1 N~r-be.-

lnte,!ace tAodels) 

PenWk1:1 14 
Team Memoe1s 

~ 

Platoo'l 

Select~c Unh 

A~h·b1oJs \lehlde l 
Fuel T lUCk 

HMo.1flfwVHumrne~ 

HMr."M'VA' H~m-,er 
f/11 Ab1M1S Tank 

; uel 148_00 g~ kom 

Shared 
Rendezvous 

Figure 1: The MokSAF Interface Agent 

ROUTE-PLA:o;NING AGENTS 

Tool Bar 

Details of 
selected 

units, 
available 
fuel etc. 

Tv.'o different route-p/mming agents (RPAs) have been developed which interact with the human team 
members in the planning task. The first agent. the Autonomous RPA, guides the human team m<:mhcrs 
through the route-planning task and performs much of the task itself. This agent acts much like a "black 
box''. The agent creates the route using its knowledge of the physical terrain and an artificial intelligence 
planning algorithm that seeks to find the shortest path. The agent is only aware of physical constraints. 
which are defined by the terrain map and the platoon composition, and intangible constraints, which are 
specified by the commanders. 

The second agent, the Naive RPA, analyzes the routes drawn by the human team members and helps 
them to reline their plans. In this mode, the human and agent work jointly to solve the problem (e.g. plan 
a route to a rendezvous point). The system was designed so that the workload is shared between the 
different components (agent or human) according to each component's relative strengths. Thus. the 



commander. who has a privileged understanding of the intangible constraints and utilities associated 
\l,.rith the mission, can direct the route around these constraints as desired. However. the commander mJy 
not have detailed knowledge about the terrain, and so the agent can indicate where the path is sub
optimal due to violations of physical constraints. 

The commander drmvs the desired route and requests that the Naive RPA reviev"" the route for physical 
violations or to indicate ways in which the path could be improved. The commander can iteratively 
improve the plan until a satisfactory solution is reached. 

EXPERIME'iTAL METHODOLOGY 

In the MokSAF pilot experiments, a deliberative, iterative and flexible planning task is examined. There 
are three commanders (Alpha, Bravo and Charlie), each with a different starting point and a common 
rendezvous point. Each commander selects units for his/her platoon from a list of available units. This 
list currently contains M60A3 tanks, Ml09A2 artillery units, MI Abrams tanks, AAV-7 amphibious 
assault vehicles, HMMWVs (i.e., hummers), ambulances, combat engineer units, fuel trucks and 
dismounted infantry. It can be easily modified to add or delete unit types. With the help of one of the 
RP!Is. each commander plans a route from a starting point to the rendezvous point for the specified 
platoon. 

Once a commander is satisfied with the individual plan, he/she can share it with the other commanders. 
Teammates needed to communicate with one another to complete their tasks successfully. Contlicts can 
arise due to several issues including shared routes and/or resources and the inability of a commander to 
reach the rendezvous point at the specified time. The mission supplied to the commanders provides them 
with a final total of vehicles required at the rendezvous point. They must coordinate regarding the 
number and types of vehicles they are planning to take to the rendezvous point. In addition. the 
commanders are told that they should not plan a route that takes them on the same path as any other 
commander and that they should coordinate their routes to avoid shared paths. 

Materials 

MokSAF 2.0 was used for this pilot study. It consists of an interface agent that presents the commander 
with a standard terrain map and markings, a tool bar as seen in Figure 1, a communication \Vindovv \vhcre 
commanders can send and receive messages and share plans, and a constraint tree. The two different 
route-plwming agents described above were evaluated. 

Participants 

Fifteen teams consisting of three-persons \vere recruited (10 teams who used the Autonomous RPA, and 
five who used the Naive RPA) from the University of Pittsburgh and Carnegie Mellon University 
communities. Participants were rectuited as intact teams., consisting of friends or acquaintances. 

Procedures 

Each team participated in a 90-minute session that began with a 30-minute training session in which the 
MokSAF environment and team mission were explained. The team was told to find the optimal path 
between the start and rendezvous points, to avoid certain areas or go by other areas, to meet the mission 
objectives for numbers and types of units in their platoon, and to avoid crossing paths with the other 
commanders. After the training session, the team participated in two 15-minute trials. Each trial used the 
s.ame terrain, but different start and rendezvous points and different platoon requirements. At the 
conclusion, participants were asked to complete a brief questionnaire. 

\\''e are measuring individual and team performance with respect to the planning task. and using J 

cognitive \\'Ork analysis technique to analyze the interaction among the team memhers to determine: if 
and hov,.· each type of agent suppm1s the team as a \\1hole. One question \\'e hope to ansv,.·er is 1..vhich 
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interface type best supports the overall team performance in this type of task. There are two expected 
trade-offs between the Auto11omous RPA (which acts as an oracle) and the Nai.-e RPA (which acts as a 
critic): 

I) The complexity of intangible constraints and multiplicity of goals: 

2) The time and/or quality of the agent-generated solutions (Autononwu.~ RPA) versus the agent
criliqucd solutions (Naive RPA). 

RESt.:LTS 

\'ie examined time to share a route for the three commanders and found that the i\monomous RPA had 
an advantage over the Naive RPA (p <.005 for Alpha, p < .063 for Bravo and p < .006 for Charlie). 
Groups using the Alllonomous RPA spent less time creating their individual plans before sharing them 
with their teammates (Tables l and 2) These results are illustrated in Figure 2. 

Table 1 · Time to Shares Route in Trial 1 
Route-Plmming Alplw Bravo Charlie 

Agent Trial 1 Trial I Trinll 

Autonomous 5.17 5.2 5.4 

Naive 8.69 9.57 6.7 

Table 2 · Time to Share Routes in Trial2 
I Noult'-Piwwing Alpha Brai'O Charlie 

Agem Trial 2 Trial 2 Trial 2 
-

Autonomous 2.9 4.01 4.4 

1 l'aive 7.1 6.15 8.7 

Time to Share Routes 

AtJtonomous RPA Naive RPA 

-Alpha Scen<Jrlo 1 

Bara1•0 S:enario · 

PliiiCharl'e Scenar c 1 

~Aipna Scena"IO 2 

1• Brav::. Sce.1an::- 2 

Figure 2 Time to Share Routes 

We also examined the individual path lengths for each commander at two points in each trial - when 
routes were first shared with the team and at the end of the 15-minute trial (Tables 3 and 4). The ending 
path lengths for Alpha (p < 0.000), Charlie (p < .000) and combined (p < 0.000) were better using the 
AutoiiOIIIOUS RPA than with the Naive RPA (see Figure 3). 

T bl 3 E d" P th I a e : n lDfil: a th. T . 11 ... en~[ lO na 
Rollte·Plannillg Alpha Charlie [ Total Trial 

,1gem Trial! Trial! 1 
Autonomous 79.7 7.8 I 181.6 
Na'lve 153.8 37.8 I 282.2 

Table 4: Ending Path Length in Trial 2 
Roufe-Pianninf{ I Alpha Cllarlfe ·-~ Total 

Agellf Trial 2 Trial 2 Trial 2 
Autonomous I 31.1 53.5 114.8 
Na'lve I 77.4 91.6 I 210.6 

Path Lengths 

.Alpha S:enari:· 1 

Iiiii Aipha Scenari:) 2 

& Bravo Scena,IO 1 

!!!!Bravo Scen~riv 2 

.All »aths Sce~a"u ~· 

Figure 3: Ending Path Lengths 



It is expected that path lengths between the first time a route was shared <lDd at the end of a trial would 
vary due to issues related to conflict resolutions among the teammates. There \'.'as a significant di ffcrencc 
in the change in path lengths from these two points 
in time (p < .OIR). TableS (and Figure 4) shows Change in Path Lengths 
that participants using the Naive RPA made more 
changes in their paths. This change could be due to 
the slate of the route when it was tirst shared; that 
is. the routes drm.vn b)1 the participants may have 
required additional refinement during the trial. 
Another possible reason for the change in the paths 
could be due to interactions with teammates. 

Table 5: Change in Path Lengths from First Share to 
End of Trial 

Route-Pla11ning A~ent Trial I I Tria/2 
AtHonomous 130.4 I 37.1 
~c - 222.2 82.8 , ~II ve 
~---

• Scer:ar1u · 

Figure 4: Change in Path Lengths 

Participants \'r'Crc asked to create optimal routes given certain confounding factors (e.g .. avoiding 
constraints, going to designated areas, and avoiding traveling on the same paths as other comrni:.lnders}. 
They were also asked to plan as a group numbers and types of units at the rendezvous point. We found 
that there was no difference in this selection of units in either route-planning agent. 

DISCUSSION 

In its current form. the Autonomous RPA has been shown to provide better assistance for both individual 
route planning and team-based re-planning. While the individual plans for Nah•e RPA users in the Alpha 
and Bravo roles were not significantly different from Autonomous RPA users in quality, it took them 
substantially more time to construct their routes. The eventual coordinated routes \\'Crc uniformly better 
for each of the individual positions in the Autonomous RPA group and for the team as a whole. 

Despite this clear superiority, participants in the Autonomous RPA group frequently expressed frustration 
with the indirection required to arrange constraints in the ways needed to steer the agent's behavior and 
often remarked that they wished they could ':i ust draw the route by hand". 

Comments on the Naive RPA focused more closely on the minutiae of interaction. In its current form, the 
user "draws" a route on the interface agent by specifying a sequence of points at the resolution of the 
terrain database. To do this, the user clicks to specify an initial or intermediate point in the path and then 
clicks again at a second point. A sequence of points is then drawn in a straight line bet\veen these 
lociltions. A route is built up incrementally by piecing together a long sequence of sw.:h segments. 
Although tools are provided for deleting unwanted points and moving control points, the process of 
manually constructing a long route is both tedious and error prone. While interaction \Vith Lhc 
Autonomous RPA automatically avoids local obstacles such as trees and closely follows curves in roads 
due to their less costly terrain weights, a user constructing a manual route is constantly fighting unseen 
obstacles which void her path or line segments which stray a point or two off a road into high penalty 
terrain. The anticipated advantages of heuristic planning and cooperation among humJn users were 
largely lost due to the necessity of focusing on local rather than global features of routes. Rather than 
zooming in and out on the map to see the start and rendezvous points before beginning to draw. our 
subjects were forced to work trom the first at the highest rnagnitication in order to draw locally correct 
segments. The resulting problems of maintaining appropriate directions across scrolling segments or .a 
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map are not dissimilar to hiking with a compass. Although you can generally move in approximately the 
right direction you are unable to take advantage of features of the terrain you might exploit if l.l more 
global view \'-'ere available. 

Of the lessons learned in this initial test of our agent-based alternatives, the difficulty of creating gond 
interfaces for communicating human intent stands out. The Autonomous RPA., v.•hich minimizes the 
human-communication, v-.•as very successful in its initial implementation. The .Naive RPA. by contrast. 
v.:ill require substantial revision before it approaches the planner in articuh.1tory directness and fluency. 
\Ve hope that subsequent refinements to the Naive RPA may allow a more thorough comparison of the 
effects of agent and human initiative on team planning and re-planning tasks. 
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